Certificate - Software Development

Array Sorting

ESOFT METRO CAMPUS FACCFEM i © All rights reserved

Array Sorting

* Here we are looking at algorithms which are used to arrange the
elements of an array in ascending or descending order.

= There are two main types of Sort algorithms.

1. Compare & Exchange Sorts
= Algorithms are Easier but Less Efficient.

2. Divide and Conquer Sorts

= Algorithms are Complex but Very Efficient specially on large arrays.

ESOFT METRO CAMPUS Fmedm' © All rights reserved ‘

- Compare & Exchange Sorts

= Mechanism for sorting is comparing elements and then
exchanging them.

= Efficiency class is O (N?)
= More suitable for small arrays.
= Examples:

1. Bubble Sort

2. Selection Sort

3. Insertion Sort

ESOFT METRO CAMPUS £ © All rights reserved

Divide and Conquer Sorts

= Mechanism for sorting Is progressively dividing array into smaller
segments until they are sorted then merge them

= Efficiency classis O (N log N)
= More suitable for large arrays.
= Examples:

1. Shell Sort

2. Merge Sort

3. Quick Sort

ESOFT METRO CAMPUS £ © All rights reserved

- Bubble Sort

Initially 9 5 12 7 2 lteration 1 9 5 12 7 2

0 1 2 3 4 0 1 5 3 /]

Target

* N — 1 Passes(lterations) D ah Van Van
lteration 2 5 9 7 2 12
= Target starts from Last A
0 1 2 3 4
Element Target
LY
= Target comes down to 1 Iteration 3 5 7 2 9 12

= Adjoining pairs are
compared and swapped

If they are out of order lteration 4 2 5 7 9 12
M 2 3 4

ESOFT METRO CAMPUS [>“L=1"% © All rights reserved

Bubble Sort — Example 1

void BubbleSort (int arr[])

int target = SIZE-1;
{ 2 Key Features
while (target > 0)

{ int j; v" Target starts from the Last Element

for(j=0; j < target; j++)

. . - v' Target is reduced by 1 after each iteration
if (arr[j] > arr[j+1])

swap (arr, j, j+1); v" This has N-1 Iterations (Passes)
target --;
) v Up to Target adjoining pairs are compared
} v' Adjoining pair is Swapped if out of order
swap (int arr[], int x, int y)
(int hold: v Swapping is done using a function

hold = arr[x];

arr[x] = arr(y]l’

arr[y] = hold;

ESOFT METRO CAMPUS 212" © All rights reserved -

Bubble Sort — Example 2

void BubbleSort (int arr[])
{ int target = SIZE-1;
while (1)

{ int j, lastswap = -1; v' Target starts from the Last Element

for(j=0; j < target; j++)

: : _ v’ Target is set to lastswap for next iteration
if (arr[j] > arr[j+1])

{ swap(&arr[j], &arr[j+1l]); v No of Iterations (Passes) are reduced

lastswap = j; }
T — v' Sorting stops when a pass is done without a swap

break; v" Adjoining pair is Swapped if out of order

else

/
target = lastswap; Swap function uses pointers. Without passing the

} array, references to the 2 elements are given

}
swap (int *x, int *y)
{ 1int hold = *x; *x = *y; *y = hold; }

© All rights reserved ‘

- Selection Sort

Initially 9 5 12 7 5 Iteration 1 e 5 12 7 2
0 1 2 3 4 index O 1 2 3 4
Smallest
= This has N-1 passes =
lteration 2 2 5 12 7 o
= |[ndex starts from O and :
goes up to one before last O indexl 2 S Cﬁ 4
mallest
element '
= In each pass smallest is lteration 3 2 > 12 7 2
selected and swapped with 0 1 In!exz 3 4
Index element Smiuest
= Comp starts from index+1 lteration 4 2 5 7 12 9
and goes to the last :
O 1 2 Index 3 4

ESOFT METRO CAMPUS £ © All rights reserved

Selection Sort — Example

void SelectionSort(int arr([])

{

int index = 0,smallest,comp; Key Features

while (index < SIZE-1)

{

v" This always has N-1 Iterations(Passes)

smallest = index;
_ v" Index starts from 0 and goes up to 1 before last
comp = index+1;

while (comp < SIZE) v Comp starts from Index+1 and goes to last
{

/ o, ®
if (arr[comp] < arr[smallest]) At the beginning Smallest is set to index position

smallest = comp; v When Comp is lower Smallest is set to that
comp++;
} v At the end of the pass elements at Index and
swap (&arr[smallest], &arr[index]); Smallest are Swapped (Only 1 Swap per pass)
index ++;
}

ESOFT METRO CAMPUS 212" © All rights reserved -

- Insertion Sort

Initially 9 5 12 7 2 lteration 1 12 2
0 1 2 3 4 3 4

= This also has N-1 passes
lteration 2 12 2
= |ndex starts from 1 and ; "

goes up to last @Temp

= Element at index is copied lteration 3 5 7 9 12 2
to Temp and compared with -
- 0 1 2 Index 3 4
previous elements ?Temp
= Temp is msert.e.d to correct teration 4 5 7 9 12 2
place after shifting elements
0 1 2 3 Index 4

ESOFT METRO CAMPUS W e Provider © All rights reserved “

Insertion Sort — Example

void InsertionSort(int arr[])
{ int index, prev, temp;
index = 1;
while (index < SIZE)

{
temp = arr[index];
prev = index-1;
while (prev>=0 && temp<arr[prev])
{
arr[prev+l] = arr[prev];
prev--;
}
arr[prev+l] = temp;
index++;
}

ESOFT METRO CAMPUS "t

v" This always has N-1 Iterations(Passes)

v" Index starts from 1 and goes up to last

v Element at Index is copied to Temp

v' Temp is compared with previous elements

v They are shifted to the next slot if Temp is lower

v" Process is repeated until an element lower than
Temp is reached or array beginning is reached

v' Temp is inserted to the very next element

© All rights reserved “

- How to test your Sorting Algorithms ?

Main Program for Sorting

define SIZE 10
main ()

{
int arrl[]={34,87,12,8,25,90,5,15,2,28};

int x;

InsertionSort (arrl) ;
printf ("%d, ",arrl[x]);
printf ("\n") ;

2, 5, 8, 12, 15, 25, 28, 34, 87, 90,

ESOFT METRO CAMPUS W o © All rights reserved “

- Efficiency Analysis of Sorting

Bubble Sort Selection Sort Insertion Sort
m Min =1, Max = N-1 Always N-1 Always N-1

Min = N-1 Min =N (N-1) / 2 Min =N (N-1) / 2
Comparisons
Max =N (N-1) / 2 Max =N (N-1) / 2 Max =N (N-1) / 2
Min=0 Min=0 Min=0
Interchanges
Swappin = -
(Swapping) Max = N (N-1) / 2 Max = N-1 Hler (L) e

(But it is Shifting)

Big O - 2 5 5
Efficiency Class 0 (N) O (N) O (N)
ESOFT METRO CAMPUS £ © All rights reserved -

Lesson Summary

= Sorting Arrays

= Compare & Exchange Sorts
= Divide & Conquer Sorts

= Bubble Sort

= Selection Sort

= Insertion Sort

= Efficiency Analysis of Sorting

ESOFT METRO CAMPUS [L=10% © All rights reserved

