
Certificate - Software Development

Array Sorting

1

Array Sorting

▪Here we are looking at algorithms which are used to arrange the

elements of an array in ascending or descending order.

▪ There are two main types of Sort algorithms.

1. Compare & Exchange Sorts

▪ Algorithms are Easier but Less Efficient.

2. Divide and Conquer Sorts

▪ Algorithms are Complex but Very Efficient specially on large arrays.

2

Compare & Exchange Sorts

▪Mechanism for sorting is comparing elements and then

exchanging them.

▪Efficiency class is O (N2)

▪More suitable for small arrays.

▪Examples:

1. Bubble Sort

2. Selection Sort

3. Insertion Sort

3

Divide and Conquer Sorts

▪Mechanism for sorting is progressively dividing array into smaller

segments until they are sorted then merge them

▪Efficiency class is O (N log N)

▪More suitable for large arrays.

▪Examples:

1. Shell Sort

2. Merge Sort

3. Quick Sort

4

Iteration 4 5 2 7 9 12

 0 1 2 3 4

Iteration 3 5 7 2 9 12

 0 1 2 3 4

Iteration 2 5 9 7 2 12

 0 1 2 3 4

Iteration 1 9 5 12 7 2

 0 1 2 3 4

Bubble Sort

5

2 5

Initially 9 5 12 7 2

 0 1 2 3 4

▪ N – 1 Passes(Iterations)

▪ Target starts from Last

Element

▪ Target comes down to 1

▪ Adjoining pairs are

compared and swapped

if they are out of order

6

Bubble Sort – Example 1

void BubbleSort(int arr[])

{ int target = SIZE-1;

while(target > 0)

{ int j;

for(j=0; j < target; j++)

if(arr[j] > arr[j+1])

swap(arr, j, j+1);

target --;

}

}

swap(int arr[], int x, int y)

{ int hold;

hold = arr[x];

arr[x] = arr[y];

arr[y] = hold;

}

Key Features

✓ Target starts from the Last Element

✓ Target is reduced by 1 after each iteration

✓ This has N-1 Iterations (Passes)

✓ Up to Target adjoining pairs are compared

✓ Adjoining pair is Swapped if out of order

✓ Swapping is done using a function

7

Bubble Sort – Example 2

void BubbleSort(int arr[])

{ int target = SIZE-1;

while(1)

{ int j, lastswap = -1;

for(j=0; j < target; j++)

if(arr[j] > arr[j+1])

{ swap(&arr[j], &arr[j+1]);

lastswap = j; }

if (lastswap == -1)

break;

else

target = lastswap;

}

}

swap(int *x, int *y)

{ int hold = *x; *x = *y; *y = hold; }

Key Features

✓ Target starts from the Last Element

✓ Target is set to lastswap for next iteration

✓ No of Iterations (Passes) are reduced

✓ Sorting stops when a pass is done without a swap

✓ Adjoining pair is Swapped if out of order

✓ Swap function uses pointers. Without passing the

array, references to the 2 elements are given

Iteration 4 2 5 7 12 9

 0 1 2 3 4

Iteration 3 2 5 12 7 9

 0 1 2 3 4

Iteration 2 2 5 12 7 9

 0 1 2 3 4

Iteration 1 9 5 12 7 2

 0 1 2 3 4

Selection Sort

8

Initially 9 5 12 7 2

 0 1 2 3 4

▪ This has N-1 passes

▪ Index starts from 0 and

goes up to one before last

element

▪ In each pass smallest is

selected and swapped with

index element

▪ Comp starts from index+1

and goes to the last

9

Selection Sort – Example

void SelectionSort(int arr[])

{ int index = 0,smallest,comp;

while(index < SIZE-1)

{

smallest = index;

comp = index+1;

while(comp < SIZE)

{

if (arr[comp] < arr[smallest])

smallest = comp;

comp++;

}

swap(&arr[smallest], &arr[index]);

index ++;

}

}

Key Features

✓ This always has N-1 Iterations(Passes)

✓ Index starts from 0 and goes up to 1 before last

✓ Comp starts from Index+1 and goes to last

✓ At the beginning Smallest is set to index position

✓ When Comp is lower Smallest is set to that

✓ At the end of the pass elements at Index and

Smallest are Swapped (Only 1 Swap per pass)

Insertion Sort

10

Initially 9 5 12 7 2

 0 1 2 3 4

Iteration 1 9 5 7 12 2

 0 1 2 3 4

Iteration 2 5 9 7 12 2

 0 1 2 3 4

Iteration 3 5 7 9 12 2

 0 1 2 3 4

Iteration 4 5 7 9 12 2

 0 1 2 3 4

▪ This also has N-1 passes

▪ Index starts from 1 and

goes up to last

▪ Element at index is copied

to Temp and compared with

previous elements

▪ Temp is inserted to correct

place after shifting elements

11

Insertion Sort – Example

void InsertionSort(int arr[])

{ int index, prev, temp;

index = 1;

while(index < SIZE)

{

temp = arr[index];

prev = index-1;

while(prev>=0 && temp<arr[prev])

{

arr[prev+1] = arr[prev];

prev--;

}

arr[prev+1] = temp;

index++;

}

}

Key Features

✓ This always has N-1 Iterations(Passes)

✓ Index starts from 1 and goes up to last

✓ Element at Index is copied to Temp

✓ Temp is compared with previous elements

✓ They are shifted to the next slot if Temp is lower

✓ Process is repeated until an element lower than

Temp is reached or array beginning is reached

✓ Temp is inserted to the very next element

12

Main Program for Sorting

define SIZE 10

main()

{

int arr1[]={34,87,12,8,25,90,5,15,2,28};

int x;

InsertionSort(arr1);

for(x=0; x < SIZE; x++)

printf("%d, ",arr1[x]);

printf("\n");

}

Output

2, 5, 8, 12, 15, 25, 28, 34, 87, 90,

How to test your Sorting Algorithms ?

Efficiency Analysis of Sorting

13

Description Bubble Sort Selection Sort Insertion Sort

Iterations Min = 1, Max = N-1 Always N-1 Always N-1

Comparisons

Min = N-1 Min = N (N-1) / 2 Min = N (N-1) / 2

Max = N (N-1) / 2 Max = N (N-1) / 2 Max = N (N-1) / 2

Interchanges
(Swapping)

Min = 0 Min = 0 Min = 0

Max = N (N-1) / 2 Max = N-1
Max = N (N-1) / 2
(But it is Shifting)

Big O –
Efficiency Class O (N2) O (N2) O (N2)

Lesson Summary

14

▪Sorting Arrays

▪Compare & Exchange Sorts

▪Divide & Conquer Sorts

▪Bubble Sort

▪Selection Sort

▪ Insertion Sort

▪Efficiency Analysis of Sorting

